Finite Element Method - 3D Mesh Generator - Metfem3D

FEM Approach

Tetrahedral elements

For tetrahedral linear elements shape functions Ni can be assumed as equal area coordinates Li given by the formula

Li = (ai + bi x + ci y + di z)/(6Ve), i = 1, 2, 3, 4

where Ve is a volume of tetrahedron. The following integration formula can be useful

Lα1Lβ2Lμ3Lν4 dxdydz = (α!β!μ!ν!)/(α + β + μ + ν + 3)! 6Ve

in order to calculate integrals Kb,eac, K*b,ea and Kb,ea. Shape functions for linear elements are Na = La for a = 1, 2, 3, 4. This gives

Kb,ea,c = (∇ Lb)T La∇ Lce = 1/(4!6Ve)[bb, cb, db] [bc, cc, dc]T =
1/(4!6Ve)(bbbc + cbcc + dbdc)
K*b,ea = (∇ Lb)T∇ Lae = 1/(36Ve) (bbba + cbca + dbda)
Kb,ea = La Lbe = 6Ve/5! when a ≠ b Ka,ea = La Lae = 12Ve/5!.

Finally, we have

{ k+ ( e Kb,eac ) φc + D+ e K*b,ea + 1/(Δt) ∑e Kb,ea } n+,a = f+,b,
{ k- ( e Kb,eac ) φc + D-e K*b,ea + 1/(Δt) ∑e Kb,ea } n-,a = f-,b,
ε0εφaeKb,ea = |zi|e ∑e Kb,ea (n+,a - n-,a)
where a, b, c = 1, …, M

where fi,b = 1/(Δt)(∑e Kb,ea)ni, an-1 with i = {+, -} and only these nodes a, b and c that participate in the particular element e can give a non-zero contribution to the sums of the general type ∑e Ke.
Let us assume that all values of na are known at a time tn. Then we can solve the third equation in equation obtaining the result

φa = (|zi|e)/(ε0ε) {∑eK*b,ea}-1 (∑e Kb,ea) (n+,a - n-,a)

where {∑eK*b,ea}-1 denotes elements of the inverse matrix to K*. After substitution the solution for φ to equation we get

ni,a {(ki |zi|e)/(ε0ε {∑eK*b,ec}-1 (∑eKb,ec) (n+,c - n-,c) (∑eKb,eac)
+ Die K*b,ea + 1/(Δt) ∑e Kb,ea} - fi,b = 0.

where i={+,-}


References

  1. ^ O. C. Zienkiewicz, R. L. Taylor and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, Sixth edition., Elsevier 2005