Finite Element Method - 3D Mesh Generator - Metfem3D
FEM Approach
Tetrahedral elements
For tetrahedral linear elements shape functions Ni can be assumed as equal area coordinates Li given by the formula
Li = (ai + bi x + ci y + di z)/(6Ve), i = 1, 2, 3, 4
where Ve is a volume of tetrahedron. The following integration formula can be useful
∫ |
Lα1Lβ2Lμ3Lν4 dxdydz = (α!β!μ!ν!)/(α + β + μ + ν + 3)! 6Ve
|
in order to calculate integrals Kb,eac, K*b,ea and Kb,ea. Shape functions for linear elements are Na = La for a = 1, 2, 3, 4. This gives
Kb,ea,c =
|
∫ |
(∇ Lb)T La∇ Lc dΩe
= 1/(4!6Ve)[bb, cb, db] [bc, cc, dc]T =
|
1/(4!6Ve)(bbbc + cbcc + dbdc)
|
K*b,ea =
|
∫ |
(∇ Lb)T∇ La dΩe = 1/(36Ve)
(bbba + cbca + dbda)
|
Kb,ea =
|
∫ |
La Lb dΩe = 6Ve/5!
|
when a ≠ b
|
Ka,ea =
|
∫ |
La La dΩe = 12Ve/5!.
|
Finally, we have
{
|
k+
|
(
|
∑e
Kb,eac
|
)
|
φc + D+
| ∑e
|
K*b,ea + 1/(Δt)
∑e
Kb,ea
|
}
|
n+,a = f+,b,
|
{
|
k-
|
(
|
∑e Kb,eac
|
)
|
φc + D- ∑e K*b,ea + 1/(Δt) ∑e Kb,ea
|
}
|
n-,a = f-,b,
|
ε0εφa ∑eKb,ea
= |zi|e ∑e Kb,ea (n+,a - n-,a)
|
where a, b, c = 1, …, M
|
where fi,b = 1/(Δt)(∑e Kb,ea)ni, an-1 with i = {+, -} and only these nodes a, b and c that participate in the particular element e can give a non-zero contribution to the sums of the general type ∑e Ke.
Let us assume that all values of na are known at a time tn. Then we can solve the third equation in equation obtaining the result
φa = (|zi|e)/(ε0ε)
{∑eK*b,ea}-1
(∑e Kb,ea)
(n+,a - n-,a)
|
where {∑eK*b,ea}-1 denotes elements of the inverse matrix to K*. After substitution the solution for φ to equation we get
ni,a
{(ki |zi|e)/(ε0ε
{∑eK*b,ec}-1
(∑eKb,ec)
(n+,c - n-,c)
(∑eKb,eac)
|
+ Di ∑e K*b,ea + 1/(Δt) ∑e Kb,ea} - fi,b = 0.
|
where i={+,-}
References